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1 Introduction

Since Cournot’s ”Researches into the Mathematical Principles of Wealth” in 1838

economists examined various forms of short run competition. Even though all

these models try to explain firms’ real-world behavior, the results differ funda-

mentally. Cournot’s textbook model is easy and convincing. Firms set quantities

and earn positive profits in equilibrium. Profits decrease in the number of firms.

These results seem quite reasonable. In its simplicity the model is an instructive

approximation for a more complex process of profit building.

But the model has some serious drawbacks. In his fundamental critique in

1883, Joseph Bertrand claims that firms set prices. While this objection is impor-

tant, it is hard to verify whether firms set quantities or prices. Beside this dog-

matic exception there is a theoretical hitch. Price determination in the Cournot

model implies the adverse technical side effect of an auctioneer. Firms inform

the auctioneer about the quantities they wish to produce. The auctioneer com-

putes the market clearing price. Firms sell exactly their quoted quantities. The

auctioneer rules out any additional trade.

The auctioneer is widespread in the literature but quite suspicious. A lot of

theorists argue that the auctioneer is still an accurate metaphor for price building

in free markets - an institution as the invisible hand. But the Bertrand model

shows that if firms set prices, we do not need the auctioneer anymore. From an

economic point of view the Bertrand model is as simple as the Cournot model.

Firms set prices given market demand. The market allocates demand to the firm

with the lowest price. Finally, firms produce the quantity demanded.

The Bertrand model is not uncontroversial. In equilibrium firms typically

make zero profits - something we do not observe in reality. Additionally, the

analysis is much more complex than in the Cournot model. Because of dis-

continuities the existence of an equilibrium in a Bertrand game is not trivial.

Furthermore, uniqueness of equilibrium requires demanding assumptions.
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Basic Cournot and Bertrand competition are quite simplistic. Edgeworth and

Stackelberg showed that the outcome depends on the strategic variable and on

timing. Later on, economists added new features of short run competition in

order to make the model more realistic. Capacity constraints (Edgeworth 1925),

Product Differentiation (Hotelling 1929) and repeated games (Friedman 1971)

induced equilibria in which firms make positive profits. In 1983, David Kreps

and José Scheinkman connected the story of Bertrand with the result of Cournot.

In a two period model they show that under certain circumstances the Cournot

outcome may occur if firms set prices in a capacity constrained game. In the first

period firms build up capacities at possibly zero costs. In the second period firms

produce at zero marginal costs up to their capacity level. Production beyond the

capacity constraint is infinitely costly. It turns out that the Cournot outcome is

the unique subgame perfect equilibrium. The model by Kreps and Scheinkman

was a breakthrough. Capacity precommitment established the basis for a new

branch in the literature. The convincing idea that firms compete in quantities in

the long run but set prices in the short run is widely accepted today.

While allowing firms to set prices, the unloved auctioneer drops out of the

scene. However, there are still a lot of simplistic assumptions. Dan Kovenock

and Ray Deneckere showed that when unit costs differ, the outcome is no more

necessarily Cournot. The firm with lower costs has an incentive to price its

opponent out of the market.

The Bertrand-Edegworth outcome crucially depends on residual demand the

firm with the higher price faces. Kreps and Scheinkman assume the efficient

rationing rule. Davidson and Deneckere (1986) show that with different rationing

rules the result may change.

But capacity precommitment is not the only possibility to prevent price set-

ting firms from a zero profit outcome. An important source is uncertainty. If

price setting firms face cost uncertainty, aggregate profits increase (see Spulber

1995). But the result of Bertrand competition under cost uncertainty is not com-

2



pletely innocuous. While adding asymmetric information makes the model more

realistic, the result is not completely satisfying. In equilibrium almost every firm

makes positive expected profits (except a bad luck firm drawing the highest pos-

sible costs). But ex post only the firm with the lowest price, i.e. the firm with

the lowest costs, makes positive profits. Every other firm serves zero demand and

earns zero profits. Again, this is not what we observe in reality. Typically, in

oligopoly markets several firms compete, each making positive profits.

In this paper we try to solve the problem of only one firm with positive profit.

To do so we add cost uncertainty to Bertrand Edgeworth competition. In fact,

we connect the Bertrand Edgeworth model with the Bertrand under Uncertainty

model. We reexamine Bertrand-Edgeworth competition with the assumption

that unit costs are private information. Firms cannot observe the competitor’s

marginal costs but know the cost distribution.

This model is important for several reasons. On the one hand, analysis of

Bertrand Edgeworth under cost uncertainty is important from an Industrial Or-

ganization point of view. Bertrand Edgeworth competition is an appropriate

description for some branches where capacities are typically finite and competi-

tion takes place in prices. The most important branch is the electricity market.

A lot of papers about electricity markets have been published recently.

On the other hand, the analysis is important for auction theory. As a matter of

fact, the setup is similar to a variable quantity auction with capacity constraints.

The correspondence in analysis between Bertrand competition an auction theory

is an achievement of Old Age. A variable quantity auction where firms have

capacity constraints exists in real life. Assume a government has a fixed budget

for road maintenance. Since governments often run a balanced budget, quantity

will depend on the price the winning firm charges. Furthermore, it is possible

that a small construction company is unable to engineer the whole street because

of capacity constraints. The existence of capacity constraints changes equilibrium

pricing.
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It is beyond the scope of this paper to provide a full theory of Bertrand Edge-

worth under uncertainty. We locate some basic phenomena like discontinuous

equilibria or the fact that capacity constraints may lower equilibrium prices.

We organize the paper as follows. Section 2 presents the basic model. Sections

3 and 4 discuss preliminaries. Results of Cournot Competition under Uncertainty

(CU) and Bertrand Competition under uncertainty (BU) are necessary to under-

stand the nature of short run competition under uncertainty. Section 5 deals with

results and properties of the equilibrium pricing in a low bid auction. In Section 6

we introduce Bertrand Edgeworth competition under uncertainty. Then, Section

7 extends the theory to discontinuous equilibria. Last, Section 8 concludes the

paper.

In the sequel of this paper we reexamine the capacity pre-commitment case

with uncertainty.

2 The Model

We consider a duopolistic market in which firms produce a homogenous product.

The market demand function is max(D(p), 0). We assume D′(p) < 0, D′′(p) ≤ 0.

Demand is positive and twice continuously differentiable on the compact set D =

{c|c ∈ (0, p̂)}. D(0) is finite and D(p̂) = 0. The corresponding inverse demand

function P (q1, q2) satisfies P ′(Q) < 0, P ′′(Q) ≤ 0.

Both firms have exogenous capacity constraints ki ∈ Ki = R+, i = 1, 2.

Capacity constraints are common knowledge. Each firm i produces the good at

a constant unit cost ci. Fixed costs are zero for both firms. The unit cost is

drawn independently from a distribution with atomless cumulative distribution

function F (ci) = F (cj) = F (c) with support C = {c|c ∈ (0, p̂)}. We choose this

support for simplicity. But we can generalize this in a natural way. Marginal

costs are private information. Each firm knows its own production cost but

only the other firm’s cost distribution. Since firms may be capacity constrained,
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we have to specify a particular rationing rule. As can easily be seen, different

rationing rules yield different equilibria. In accordance with the literature we

choose the efficient rationing rule. The problems related to this rationing rule

have been widely discussed in the literature1. The efficient rationing rule has

a natural interpretation. Consider an economy with identical consumers. The

firm charging the lower price knows that there will be residual demand for the

opponent. To improve the relative market position, the underselling firm may

be interested in leaving the smallest demand for a given price to the other firm.2

That is why it limits the quantity each consumer can buy to ki/D(pi). In case

of efficient rationing, the residual demand of the undersold firm i is obtained

by shifting the market demand kj units to the left. Efficient rationing is the

worst case scenario for the undersold firm. However, the rule guarantees that the

quantity sold from the firm with the lower price is allocated to the consumers

with the highest valuation. Consumer surplus is therefore maximized and gains

from trade are exhausted.

Firms compete in prices. They simultaneously set prices chosen from the set of

feasible prices P = [c, p̂]3. With the efficient rationing rule firm’s expected profits

are:

Eπi (pi (ci) , ci) = (pi − ci) min (Di (pi) , ki) Pr (pi < pj)

+ (pi − ci) min (Di (pi), ki) Pr (pi = pj) Pr (ci < cj)

+ (pi − ci) min (max (D (pi)− kj, 0) , ki) Pr (pi > pj)

In case of a tie we allocate the demand to the firm with lower marginal costs,
1For a discussion see Davidson-Deneckere (1986).
2This is a dynamic argument in a static game, but the relative market position may be

important for funding reasons.
3We do not consider cases where firms set prices below unit costs since in a discrete approx-

imation these strategies are strictly dominated. If strategy spaces are not compact we typically
have a continuum of equilibria for Bertrand games. We allow for weakly dominated strategies
in order to maintain the Bertrand knife edge result.
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independent of capacity.4

This is a static game under incomplete information. We assume that firms act

as Bayes-Nash players. A strategy is a function

pi : Ci ×Ki ×Kj −→ Pi

That is a mapping from the type space Ci×Ki×Kj onto the space of feasible

actions Pi. Since capacities are exogenous and common knowledge, we simplify

notation. In the remainder of this paper we simply write p∗i (ci) for the equilibrium

pricing scheme. A Bayes-Nash equilibrium (BNE) is a price vector p∗(c) that

specifies for both firms best answer given the strategy of the competitor.

In order to get close to uncertainty games we first investigate text book Cournot

competition under cost uncertainty and Bertrand competition under uncertainty.

3 Cournot Competition Under Cost Uncertainty

Consider a Cournot duopoly where the inverse demand function is P (Q) =

P (q1, q2). Firms produce with marginal cost drawn independently from an identi-

cal distribution with cumulative distribution function F (c) and support C. Costs

are private information but the distribution is common knowledge. A strategy is

a mapping

qi : Ci −→ Qi

Let Ri(qj|ci) be firm i’s reaction function given its costs ci. The reaction function

is defined as:

Ri(qj(cj)|ci) ≡ arg max
qi

∫ p̂

0
qi [P (qi + qj (cj))− ci] dF (cj)

Because of our concavity assumption the reaction functions are downward

sloping and a stable equilibrium exists. For a general demand function the equi-

librium is difficult to characterize. But when demand is linear the equilibrium
4It turns out that the breaking rule does not matter in Bayesian Nash equilibrium for strictly

increasing equilibrium pricing schemes. A tie takes place with probability 0.
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is easy to derive. There is a unique BNE of the form qi = ai + bici
5. We call

the solution to this problem qcu
i (ci). We compute the equilibrium in the simplest

case with a uniform cost distribution:

D (p) = max (1− p, 0) c ∼ U (0, 1)

The equilibrium is

qcu
i (ci) =

5
12
− ci

2
for c ∈

(

0,
2
3

)

Each firm behaves like it would play against a firm of an expected cost type. 6

The equilibrium price will be P = 1
6 + c1 + c2.

4 Bertrand Competition Under Cost Uncertainty

The main source for Bertrand competition under cost uncertainty (BU) is Spulber

(1995). The setup is similar to our model. Marginal cost is private information.

But differently, BU implies ”the winner takes it all” competition. The low cost

firm serves the entire market. Its opponent has zero demand. To solve this

problem we rely on results from auction theory. It turns out that this problem is

identical to a variable quantity auction (See Maskin and Riley 1984). Firms act

as Bayes Nash Players. Expected profits are equal to

πi (pi (ci) , ci) = (pi (ci)− ci) D (pi (ci)) G (pi (ci))

where G (pi (ci)) denotes the probability that firm i sets the lower price. A strat-

egy is a mapping

pi : Ci −→ Pi

We solve for a symmetric increasing equilibrium.
5See Basar (1978).
6Please note that this is not true in general but for the linear example.
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Theorem 1 (Spulber 1995): In the Bertrand under Uncertainty model firms

set prices according to the differential equation, initial condition and the side

constraint:

p∗′ (c) =
f (c)

1− F (c)
π (p∗ (c) , c)

∂π(p∗(c),c)
∂p∗(c)

π (p (p̂) , p̂) = 0

π (p∗ (c) , c) = 0

We write the differential equation in a compact form

p∗′ (c) = v (c)
π (p∗ (c) , c)
πp (p∗ (c) , c)

where v (c) is the hazard rate.

Proof of Theorem 1 See Spulber 1995

We call the solution of this problem pBU . Of course, Bertrand competition is

always a special case of Bertrand Edgeworth competition, independent of uncer-

tainty. In section 6 we show that high cost firms may set the same prices as in

the Bertrand under uncertainty model.

The problem with a Bertrand Duopoly under uncertainty is that in equilib-

rium every firm (except the firm drawing costs of p̂) has ex ante positive profits.

Ex post, however, only one firm generates positive profits, since all other firms

face no demand. In reality we do not observe this knife-edge result. We do not

observe a monopoly in each market. With capacity constraints, we get rid of this.

That is one reason why Bertrand Edgeworth competition entered text books in

the early 20th century: Its predictions often coincide with real world practice.
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5 Variable Quantity Auction with Capacity Con-

straints

To understand the nature of Bertrand-Edgeworth Competition with capacity

constraints we start with a simple example of a low bid auction. Two firms have

exogenous capacity constraints ki = kj = k. Demand is D(p)=max(1 − p, 0).

Marginal costs are private information and independently drawn from a (0,1)

uniform distribution. Firms simultaneously set prices. The firm with the lower

price serves the market up to its capacity. The overbidder cannot serve residual

demand and has therefore zero profit. This, at first glance, is not very realistic

since rationing occurs at the market level. But the idea that the winner of

an auction can buy as much as he wants/can is reasonable. Occasionally, in

procurement auction only one seller delivers its capacity though demand would

be higher.

Firm i’s expected profit is:

Eπi (pi (ci) , ci, k) = (pi (ci)− ci) min (1− pi (ci) , k) (1− ci) .

Despite the discontinuity effect, the problem is identical to the BU model.

Eπi (pi (ci) , ci, k) = πi (pi (ci) , ci) G(ci) = πi (pi (ci) , ci) (1− F (ci)) .

The fundamental differential equation from section 4 applies here too:

∆p∗ (c)
∆c

= v (c)
π (p∗ (c) , c)
πp (p∗ (c) , c)

.

The simple difference to the standard BEU case is that we have, depending on

the price, two different cases. The winning firm is either capacity constrained or

not. Assume ∃ ci s.t. p∗i (ci) > 1 − k. In this case the underbidding firm is not

capacity constrained and we are in the BU case. The solution has to satisfy the
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differential equation:

p∗′ (c) =
(p (c)− c) (1− p (c))

(1− 2p (c) + c) (1− c)
,

the initial condition and the side constraint:

p (1) = 1 π (c) ≥ 0.

The solution to this differential equation is:

pu (c) =
1
3

+
2
3
c.

Assume there exists a ci s.t. p∗i (ci) ≤ 1 − k. In this case the firm is capacity

constrained and we have π (p∗ (c) , c) = (p∗(c) − c)k. The solution has to satisfy

the differential equation:

p′ (c) =
π

πp (1− c)
=

(p (c)− c) k
k (1− c)

=
p (c)− c
(1− c)

Now we have to find the right initial condition. Define c̃i such that p∗i (c̃i) = 1−k.

At this c̃ firms’ expected profit in the constrained case must be equal to the profit

in the unconstrained case. This implies that the equilibrium pricing scheme will

be continuous on the set D. So the solution to the last differential equation must

cross the solution in the BU case exactly at a cost c̃, where the price is 1− k.

pu (c̃) =
1
3

+
2
3
c̃ = 1− k

We can solve for c̃ and obtain c̃ = 1 − 3
2k. The initial condition and the side

constraint are

p
(

1− 3
2
k
)

= 1− k π (c) ≥ 0

The solution to this differential equation is:

p(c) =
4− 4c2 − 3k2

8(1− c)
.
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Putting the things together we have the following equilibrium:

p∗ (c) =



























4−4c2−3k2

8(1−c) if 0 ≤ c ≤ 1− 3
2k

1
3 + 2

3c if 1− 3
2k < c < 1

c if 1 ≤ c

In the capacity constrained region, the solution crucially depends on the hazard

rate of the distribution function F . See figure 1 for the equilibrium pricing scheme

and figure 2 for the profit function for k=0.2.

1-k 

p(c) 

c p̂  

1 

c~

Figure 1: Bayes Nash Equilibrium in the Low Bid Auction

Proposition 1 : In a symmetric Bayes Nash Equilibrium of the variable quan-

tity low bid auction with equal capacity constraints the pricing scheme p∗i (ci, k)

satisfies the following properties:

1. p∗i (ci, k) is continuous.

2. p∗i (ci, k)is increasing in ci.

3. p∗i (ci, k) is piecewise differentiable on the ranges [0, c̃], [c̃, p̂].

4. p∗i (ci, k) is piecewise convex in c on the ranges [0, c̃] and [c̃, p̂].
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�(c) 

c p̂  

 

c~

Figure 2: Expected Profits in the Low Bid Auction

5. For any k > 0, p∗i (ci, k) is strictly lower than the monopoly price.

Proof of Proposition 1 :

1. Assume the equilibrium would not be continuous. The point of non-continuity

has to be c̃. This would imply that any price between the two branches would

be dominated (as the probability would not change if one firm would play this

price). But the profit function in the constrained case is strictly increasing. So

we have a contradiction.

2-4 are straightforward. In the capacity constrained region, the properties are

easy to check. For the BU region see Spulber (1995). Number 5 is not intuitive.

Suppose p∗(c) = pm(c). At the monopoly price we know ∂Π
∂p = 0. Hence, the

first order condition in the capacity constrained range would become p′(c) →∞.

This is possible if and only if either k = 0 or c = p̂ But Π(p̂) = 0 6= Πm. This

completes the contradiction. �

Proposition 2 : In the symmetric Bayes Nash Equilibrium the profit function

Π(p∗i (ci, k) satisfies the following properties:

1. Πi (pi(ci), k)) is decreasing in ci, and concave in k.

2. Πi(pi(ci), k) is continuous.
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3. Πi(pi(ci), k) is piecewise differentiable on the ranges [0, c̃], [c̃, p̂]

4. Πi(pi(ci), k) is strictly lower than the monopoly profit for any k > 0.

Proof of Proposition 2 : All these properties except one follow directly from

the properties of the equilibrium pricing scheme. As in equilibrium the winning-

probability is independent of price and capacity, concavity in capacity is obvious.7

6 Bertrand Edgeworth Under Uncertainty

6.1 General Results

The analysis is similar to the simple low bid auction. We use techniques from

auction theory. The only difference is that the overbidder has the possibility to

serve residual demand.

Under full information the game G(k1, k2, c1, c2) is discontinuous in p. But the

existence of a mixed strategy equilibrium is guaranteed by Dasgupta and Maskin

(1986). With uncertainty the analysis is easier. The discontinuity vanishes.

Lemma 1 : The game has a pure strategy Bayes Nash Equilibrium pi(ci, ki, kj).

Proof of Lemma 1 : The payoff function

πi (pi (ci) , ci) = (pi − ci) min (Di (pi) , ki) Pr (pi < pj)

+ (pi − ci) min (Di (pi), ki) Pr (pi = pj) Pr (ci < cj)

+ (pi − ci) min (max (D (pi)− kj, 0) , ki) Pr (pi > pj)

is continuous in p because in the increasing equilibrium the winning probability is

independent of p. We have conditional independence, atomless distributions for

types and compact action spaces. All conditions of Milgrom and Weber (1985)

7Concavity is not intuitive. But as we will see in the sequel that this property makes life

easier in the capacity pre-commitment game.
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are fulfilled and the game has a pure strategy Bayes Nash Equilibrium. We may

also apply theorem 2 of Dasgupta and Maskin (1986). �

Next, we establish that the pricing scheme is non decreasing.

Lemma 2 : The pricing scheme pi(ci|k) is nondecreasing in ci.

Proof of Lemma 2 : Let w.l.o.g. c1 ≥ c2. Let pi(ci), i = 1, 2 be the equilibrium

price. Define ψL(pi) as the demand for firm i if it sets the lower price. Define

ψH (pi) analogously. Assume ∃ c1, c2 s.t. p2(c2) > p1(c1).

Optimality implies

Eπ (p1|c1) > Eπ (p2|c1)

Eπ (p2|c2) > Eπ (p1|c2)

We add the equations

G1 (p1 − c1) ψL (p1) + (1−G1) (p1 − c1) ψH (p1)

> G2 (p2 − c1) ψL (p2) + (1−G2) (p2 − c1) ψH (p2) .

Simplification yields

G2ψL (p2) + (1−G2) ψH (p2) > G1ψL (p1) + (1−G1) ψH (p1) .

But expected demand is non-increasing in p. This completes the contradiction.

�

In the remainder of this paper, we want to be as simple as possible. We assume

that D(p) ≡ max(1−p, 0). Depending on capacity level we can define 4 potential

different cost regions. Define region Ai ≡ {ci ∈ (0, p̂) : p∗i (ci) ≤ 1 − ki − kj} as

firm i′s cost region, where an equilibrium price, if it exists, is not bigger than the

capacity clearing price P (ki + kj) = 1− ki − kj.

Theorem 2 : If firm i’s marginal cost lie within region Ai, this firm sets the

capacity clearing price pi(ci) = P (ki + kj) = 1 − ki − kj. In other words, an

equilibrium price is not lower than the market clearing price.
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Proof of Theorem 2 : The highest price in this region is the market clearing

price P (ki+kj). At the market clearing price both firms are capacity constrained.

Both sell their entire capacity. By quoting a price below the market clearing

price, firm i cannot increase the demand for its good. But the markup per unit

decreases. Hence, profits decrease. If a firm deviates upward, we are not in region

Ai. �

If capacities are large it may be that the capacity constraint does not bind. If

so, firms set their prices independent of capacities. Then, the price in the BEU

case is equal to the price in the BU case: pi(ci, ki, kj) = pi(ci). Let Di ≡ {ci ∈

(0, p̂) : pBU
i (ci) > 1−min(ki, kj)).

Theorem 3 : If a firm’s marginal costs lie within region Di, this firms sets a

price pi(ci) according to the differential equation, the initial condition and the

side constraint:

p∗′ (c) = v (c)
π (p∗ (c) , c)
πp (p∗ (c) , c)

π (p (p̂) , p̂) = 0

π (p∗ (c) , c) = 0

Proof of Theorem 3 : See section 4.

Complexity arises due to non-differentiability of the demand function and the

fact that the equilibrium strategy is not necessarily strictly increasing. There are

(possibly) two additional regions where price setting behavior is more complex

than in regions Ai and Di. Define region Bi ≡ {ci ∈ (0, p̂) : 1 − ki − kj <

p∗i (ci) ≤ 1−max(ki, kj)} and region Ci ≡ {ci ∈ (0, p̂) : 1−max(ki, kj) < p∗i (ci) ≤

1−min(ki, kj)}. Define finally SX as the supremum of the set X. The next figure

shows how an equilibrium should look like in an idealized situation for kj > ki:

Please note that depending on capacities, some of the sets A,B,C can be empty.

For our linear example, region D is not empty.
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1-ki 

1-kj 

1-ki-kj

P(c) 

c 

Figure 3: Idealized Equilibrium in BEU Competition

6.2 Symmetric Equilibria

In auction theory we typically assume that a symmetric equilibrium exists. Firms

play strictly increasing strategies that are differentiable. This makes the analysis

much simpler. But this may not be the case in this model. A continuously differ-

entiable pricing scheme p(c) does not exist in general. Analogous to the low bid

auction we look for a symmetric, strictly increasing and continuous equilibrium.

To be sure that a symmetric equilibrium exists we assume that both firms have

the same capacities. As firms now are a priori identical at least one equilibrium

should be a symmetric one. Of course this is a limiting assumption. But the

change to asymmetric bidder models is more a question of technics than of eco-

nomics. Since we prefer giving economic comprehension to solving systems of

differential equations we restrict to the equal capacity model.

For any c, both firms should set the same price pi(ci). Assume a continuous,

symmetric equilibrium exists where both firms play strategies that are strictly

increasing in c (on the sets B,C and D) . This implies that regions B and C

coincide.
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Theorem 4 : If a firm’s marginal costs lie within region B
⋃

C and capacities

are such that the equilibrium is a continuous and symmetric one in which the

equilibrium strategy is strictly increasing in c, firms set prices pi(ci) among the

differential equation

p′ (c) =
G′ (c)

(

πH − πL
)

G(c)∂πL

∂p + (1−G (c)) ∂πH

∂p

the initial condition

p
(

sC)

= 1− k

and the side constraint

pi (ci) ≥ ci

Proof of Theorem 4 : Firm i’s expected profit is equal to

Eπi (pi (ci) , ci) = πL(p(c), c)G(c) + πH(p(c), c)(1−G(c))

= (p (c)− c) min (D (pi) , ki) (1− F (ci))

+ (p (c)− c) min (max (D (pi)− kj, 0) , ki) F (ci)

By the revelation principle, the BNE can be represented as a direct mechanism

that satisfies incentive and individual rationality constraint. The expected profit

of a type c firm acting as a type y firm is:

Eπi (y, c) = πL (p (y) , c) G (y) + πH (p (y) , c) (1−G (y))

By the envelope theorem:

∂Eπi (c)
∂c

=
∂πL

∂c
(p (c) , c) G (c) +

πH

c
(p (c) , c) (1−G (c))

This implies that ∂Eπi(c)
∂c < 0 for c < p̂. y = c is a global maximum of Eπi (y, c) .

Rearranging the terms yields:

p′ (c) =
G′ (c)

(

πH − πL
)

G(c)∂πL

∂p + (1−G (c)) ∂πH

∂p

�

17



As can easily be seen the Bertrand under uncertainty model is just a special case

of Bertrand-Edgeworth under uncertainty. If we set in this formula ΠH = 0 we

obtain the Bertrand under uncertainty result.

The solution to this differential equation is the final part of the equilibrium

p∗i (ci). We fully characterized the equilibrium. The serious problem we have is,

that such an continuous equilibrium does not always exist. We will see this in

section 7.

As mentioned above, the Bertrand-Edgeworth under uncertainty model is

formally identical to a variable quantity auction where firms are capacity con-

strained. Therefore, it is intuitive that each bidder equalizes marginal gains from

a higher price (through a higher profit in the case of winning and maybe in the

case of losing) with the marginal costs (through a lower probability of winning

and perhaps of a lower profit in the case of losing).

6.3 Example

We compute an equilibrium pricing scheme for the following case:

D (p) = max (1− p, 0) ,

c ∼ U (0, 1) ,

ki = kj = k = 0.5.

Assume ∃ c s.t. p∗i (ci) > 1− k. In Section 4 we saw:

p∗i (ci) =
1
3

+
2
3
ci

SC = 0.25

Assume ∃ c s.t. 1−2k < p∗i (ci) < 1−k. The solution has to satisfy the following

differential equation:

p′ (c) =
(p(c)− c) (p (c))

(1− c)0.5 + c(0.5− 2p(c) + c)
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and the initial condition

p (0.25) = 0.5.

The solution to this differential equation is a mess but an analytical solution

exists.

Assume finally ∃ c s.t. p∗i (ci) ≤ 1 − 2k. This implies that both firms are

capacity constrained. By Theorem 1:

p = 0.

In this example the first and the second case are relevant. Set A is empty and

the sets B and C coincide. We do not show the algebraic solution. Figure 4 is a

plot of the equilibrium pricing scheme.

1-k 

p(c) 

c p̂  

1 

c~

Figure 4: Symmetric Bayes Nash Equilibrium in the BEU game

6.4 Properties

Proposition 3 : In the unique continuous symmetric Bayes Nash Equilibrium

the pricing scheme p∗i (ci, ki, kj) satisfies the following properties:
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1. p∗i is constant on the set A and strictly increasing on the sets B,C,D.

2. p∗i is piecewise differentiable on sets [A,B, C, D].

3. p∗i is convex on the set A and D.

4. On the set D p∗i lies strictly below the monopoly price.

5. The price in the BEU case may lie below the price in the BU case.

Proof of Proposition 3 : We prove 1 in lemma 2. For region A differentiability

is trivial. For region D Maskin and Riley show that the equilibrium bid function

is unique, differentiable and strictly increasing. We may proof the properties the

same way here. For regions B and C we compute the partial derivative. It turns

out that under our assumptions the partial derivative is finite. By Lifschitz the

solution is continuous and differentiable.

3. and 4. See Spulber (1995). It turns out that these properties do not necessarily

carry over to the BEU case (i.e. regions B and C) .

5. Compare the fundamental differential equations for the BU case and the

constrained case. For the constrained case we have

p′ (c) =
G′ (c)

(

πH − πL
)

G(c)∂πL

∂p + (1−G (c)) ∂πH

∂p

We observe an additional term (1−G(c)) ∂πH

∂p in the denominator. In equilibrium

this term may be negative implying that the partial derivative is larger than in

the BU case. For the same reason the BU properties 3 and 4 do not necessarily

hold for regions B and C. For an example see section 6.3.

Because of non differentiability the profit function has two branches. An analyt-

ical solution for the left branch does not necessarily exist. The right branch is

identical to the low bid auction.

Proposition 4 : The expected profit function of a firm i with costs ci facing

capacities k has the following properties
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1. It is strictly positive on the range [0, p̂).

2. It is strictly decreasing in ci.

3. It is continuous

4. It is piecewise differentiable on the sets A,B,C and D respectively.

Proof of Proposition 4 :

1./2. See theorem 3. Property 4 follows directly from the properties of p∗. Point

3 is slightly more complicated. We will see in the next section that the pricing

scheme is not necessarily continuous. The remaining question is whether at least

the profit function is continuous. It is clear that our pricing scheme has at most

one point of discontinuity at the supremum of the set C. Further, we know that

for each type c both firms set exactly one price. By proposition 4 the profit

function is continuous for both branches on the sets C and D. Suppose the

equilibrium profit function would not be continuous at SC . This implies that

the profit on the right hand branch would be substantially lower than on the

left hand side (because of the jump). This implies that by switching to a price

above 1− k profits decrease strongly. But if this discontinuity would exist, firms

could do better. By staying in the constrained region C profits would decrease

continuously. Since this solution still solves the fundamental differential equation

we have in fact a solution of our problem. This completes the proof. �

It is noteworthy that if firms have capacity constraints prices can be lower

than in the BU case (for some costs). This is a fundamental difference to the full

information case, where binding constraints yield higher (or not lower) prices in

equilibrium. An economic reasoning behind may be that with a capacity con-

straint, there is also residual demand for the case where own costs are higher. If

a firm serves residual demand, it has to set a low price in order to have positive

demand. Lowering the price increases the probability of serving original demand.

But there is an additional effect in the BEU model. A lower price can increase

21



profits for the case when a firms serves residual demand even though it lowers

the profit in the case of winning. The increase in (residual) demand can over-

compensate the decrease in the price. These effects together yield a region where

the BEU price is lower than the BU price.

As mentioned above, cost uncertainty is an important feature in Bertrand

games. The effect of uncertainty on aggregate profits is not clear. While low-

ering the competition effect (compare the standard Bertrand paradox with the

Bertrand under uncertainty game), firms act as risk averse bidders in the auc-

tion. There is a lot of space for future research. One theme may be the effect of

information sharing coalitions in the sense of Shapiro (1986).

7 Discontinuities in the pricing scheme

If capacities are small an equilibrium is not necessarily continuous. In the fun-

damental differential equation the nominator is always positive. But the denom-

inator can be negative:

p′ (c) =
G′ (c)

(

πH − πL
)

G(c)∂πL

∂p + (1−G (c)) ∂πH

∂p

For our example the denominator is negative if

(1− c) k + c (1− k − 2p (c) + c) < 0

k − 2ck + c− 2cp (c) + c2 < 0

k <
2cp∗ (c)− c + c2

1− 2c
If we fill in the former initial condition, the pricing scheme would be decreasing

- a contradiction to lemma 2 (the denominator in the fundamental differential

equation is negative). Hence

p
(

1− 3
2
k
)

= 1− k
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is not the right initial condition. The differential equation we have to solve is

unchanged. To find the new initial condition in regions B and C we need to

assure that at the argument of the initial condition no firm has a higher profit

by deviating from the pricing scheme proposed.

The equilibrium pricing scheme has still two branches. The discontinuity will

arise at SC . To avoid misunderstandings we rename this point as SC ≡ cD (point

of discontinuity). pl(cD) as the right end of the lhs price branch. Let pr(cD) be

the left end of the rhs price branch respectively. Continuity of the profit function

implies that the right endpoint of the left hand branch must give the same profit

as the left endpoint π(pl(cD) = π(pr(cD)). Furthermore, any price in between

these two endpoints must imply a lower expected profit (no deviating condition).

Hence, the derivative of the expected profit with respect to p must be 0 at pl(cD).

In other words: If a firm with marginal costs cD deviates and sets a price slightly

above pl
(

cD
)

the probability of being the underbidder does not change. This is

true, since the other firm playing the discontinuous equilibrium pricing scheme

does not play any price in between.

To recapitulate, the following conditions must hold at a point of discontinuity:

π
(

pl (cD)

, cD)

= π
(

ph (

cD)

, cD)

,

pl
(

cD
)

must satisfy

p′ (c) =
G′ (c) (1− 2k − p (c) + c)

G(c)k + (1−G (c)) (1− k − 2p (c) + c)
,

pl = arg max
p

(

p− cD)

(1− p) G
(

p
(

cD))

+
(

p− cD)

(1− k − p)
(

1−G
(

p
(

cD)))

,

and ph
(

cD
)

must satisfy

ph = arg max
p

(

p− cD)

(1− p) G
(

cD)

p′ (c) =
G′ (c) (p (c)− c) (1− p (c))

G (c) (1− 2p (c) + c)
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No closed form solution exists for the equilibrium. The next figure shows the

equilibrium pricing scheme for k = 0.2.

1-k 

p(c) 

c p̂  

1 

c~

Figure 5: Discontinuity of p(c)

The discontinuity arises from a jump from the constrained profit function to

the unconstrained profit function. For p∗i ≤ 1− k firm i is capacity constrained.

The profit function takes the form πi(pi(ci), ci) = (pi(ci)− ci)(ki)(1− ci) + (pi −

ci)(1−kj−pi)c. As soon as p∗i (ci) > 1−ki the capacity constraint for firm i is not

binding and the residual demand for the overbidder is 0. The overbidder’s profit

function takes the form πi(pi(ci), ci) = (pi(ci)−ci)(1−pi)(1−ci). Since the ending

point pl(cD) of the unconstrained profit function coincides with a maximum, we

jump from one peak to the other, with a discontinuity in the middle (see figure

6).

Why does this discontinuity not arise in the low bid auction? The reason is

simple. At a point of discontinuity c̃ a constrained firm never has an incentive to

lower its price from 1-k. The constrained profit function is strictly increasing. So

the constrained firm will always prefer to stay on the constrained profit function

to jump over to the unconstrained profit function. This is not the case in BEU

where the constrained profit function is concave in p.
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Figure 6: Discontinuity of p(c)

8 Conclusion

The present paper expands the Bertrand-Edgeworth model to cost uncertainty.

This setup is identical to a variable quantity auction with capacity constraints.

The equilibrium pricing scheme can be separated into four regions. The equi-

librium pricing function is not differentiable - it is not even necessarily continu-

ous. If costs are low, prices may be independent of capacity level. For high costs

and/or high capacities the model is identical to the Bertrand model with costs

uncertainty. For medium costs, the equilibrium price can be lower than with-

out capacity constraints. This is not intuitive at all but the effect of a residual

demand can lower the price.

For some capacities equilibrium can be discontinuous even for a simple linear

demand calibration. The discontinuity in the pricing scheme is noteworthy but

very complicated to proof in reality. If firms play BEU it is not possible to

discriminate between prices that are not played because cost differed and prices

that are not played because they are in the discontinuity region.

We have seen that in the incomplete information case equilibria are in pure

strategies while in the full information case there may be regions where equilibria

necessarily occur in mixed strategies. This is a striking difference.

It is hard to compare a pure strategy with a mixed strategy equilibrium. In

particular it is not possible to detect whether prices are higher or lower under
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uncertainty. But we can state that results are quite similar with uncertainty.

Especially the fact that firms charge supracompetitive prices is preserved under

uncertainty. Ex ante (almost) every firm has a positive profit. Ex post firms make

positive profits, if costs are not too high. So we can solve the serious problem of

the Bertrand under uncertainty model. In our case it is possible that both firms

make positive profits while in the Spulber duopoly model there is always one firm

that faces zero demand.

Some economists say that people do not play mixed strategies. These purists

should be pleased with the result that Bertrand Edgeworth competition under

uncertainty replicates more or less the results of the full information model but

does not need the construct of fully mixed strategies.

In the literature, Bertrand Edgeworth competition became the generally ac-

cepted description for the electricity market. From the oscillations in prices

economists deduced that this may be due to fully mixed strategies or that fully

mixed strategies are the right description for this phenomenon, respectively.

In reality we observe markets where firms definitely face capacity constraints

but we do not observe price oscillations. Examples may be goods like cars or

books. But if firms face Bertrand Edgeworth competition but prices do not move

in the sense of mixed strategies, there must be a mistake in the setup.

Of course, the objection that the model is inappropriate because firms play

repeated games is always possible. But this dynamic argument would prohibit

any static analysis. But static analysis in oligopoly models is still accurate and

accepted. The initial point of any analysis will always be the one-shot interaction.

And finally there will always be insights by a one-shot setting. Not only because

in repeated games anything goes and equilibrium analysis is of little value.

A second objection would be that firms do not set prices but quantities.

This would put the cart before the horse. Most of economist would support the

Bertrand paradigm that firms set prices in the short run.

The right answer to the question asked is that in these markets firms do no
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play fully mixed strategies. The setup is not wrong but incomplete. If they

play Bertrand Edgeworth competition they must be either in the pure strategy

region or there must be an other explanation. Of course they may be in the pure

strategy region because of capacity pre-commitment (Kreps and Scheinkman) or

because of large capacities. But our paper may also explain why firms behave

like this. The answer may be cost uncertainty. We do not want to judge what

is more realistic, capacity pre-commitment or cost uncertainty. Both setups give

special insights and both hypothesis should be tested empirically.

But what about the description of the electricity market? Nevertheless, our

analysis may even provide an accurate description for this market. Some authors

argue that prices in electricity markets vary over time since firms play mixed

strategies. This argument assumes that Bertrand Edgeworth competition is an

approximation for a more complex (repeated) game. But it is also possible that

these oscillation do no emerge because of mixed strategies but because of varying

costs. Suppose costs vary over time and firms face one shot interactions every

day. The result would be that prices vary over time.
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