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1. Introduction

This paper is about expert services. Expert services are provided by medical doc-

tors and lawyers as well as by less glamorous repair professions like auto mechanics and

appliance service-persons. All these professions have in common that typically the seller

not only provides the repair services; at the same time, the seller acts as the expert who

determines how much treatment is necessary because the customer is unfamiliar with the

intricacies and peculiarities of the good in question.

Aggravating this special feature is the fact that even ex post consumers can hardly

determine the extent of the service that was required ex ante. It is often difficult, if not

impossible, to find out whether repairs were really needed or whether necessary treat-

ments were not performed. Brake shoes changed prematurely work in the same way as if

the shoes replaced had been really faulty; so does the patient with his appendix removed

(un-)necessarily. In contrast, the wisdom tooth may hurt even when it was in perfect con-

dition at the time of the last check-up; toothache need therefore not prove that necessary

treatment was not carried out. Since from ex post observations the buyer can never be

certain of the quality of the services he has purchased, such services have been termed

credence goods (Darby and Karni (1973)).

The information asymmetry between buyer and seller obviously creates strong in-

centives for opportunistic seller behavior. On the one hand, if there is plenty of money

in repair, sellers may recommend treatments that are not necessary. On the other hand,

they may not perform an urgently needed repair if other activities are more profitable.

The chances of consumers finding out about such fraudulent behavior are typically slim.

Since the problem is a common one and evidence on seller honesty is difficult to obtain,

the media enjoy publicizing those anecdotes about fraudulent experts whose actions are

covered up.1)

Apparently, there is a need for mechanisms to discipline fraudulent experts. Per-

haps the simplest mechanism ensuring honest services is the separation of diagnosis and

treatment. Unless there is collusion, the diagnosing expert has no incentive to recommend

unnecessary treatments and the repairing expert may only fix what has been diagnosed by

her colleague. An example of this simple yet effective mechanism is the often encountered

separation of the prescription and the preparation of drugs.

This ‘separation’ mechanism, however, fails to do a good job when it is cheaper to

provide diagnosis and repair jointly rather than separately. It is, for example, cheaper to

repair any damage while the transmission or belly is open for diagnosis than to put every-

thing back together and repeat the process elsewhere for the actual repair. Apparently,
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such economies of scope between diagnosis and repair also make the related mechanism

of consulting several experts unattractive.

In this paper we want to analyze whether the market may solve the fraudulent expert

problem when there are profound economies of scope between diagnosis and treatment.

In our setup repair is possible only after diagnosis. A customer choosing the services

of a second expert, therefore, automatically incurs the cost of a further diagnosis which

makes the ‘separation’ as well as the ‘second opinion’ mechanisms unattractive. From the

observation of market data such as quoted prices and market shares consumers attempt

to infer the sellers’ incentives to provide honest/fraudulent services which are assumed to

be verifiable. We show that market equilibria inducing non-fraudulent behavior do indeed

exist.

We consider experts who are capacity constrained: an active expert may have to

ration her clientele due to insufficient capacity or she may also end up with idle capac-

ity. Experts charge separate prices for diagnosis and repair. Competition is thus of the

Bertrand-Edgeworth type.

First we analyze how an expert’s incentives depend on the interplay of prices, ca-

pacity, and size of her clientele. If, say, the expert does not have enough customers, she

may carry out unnecessary repairs to utilize her otherwise idle capacity; with too many

customers she may repair inefficiently little if diagnosis is more profitable than treatment.

We show that if the experts charge what we call equal compensation prices, they are

indifferent between diagnosis and repair given enough customers to allow them to work

at full capacity: with these prices diagnosis and repair generate the same profit at the

margin. Therefore, experts are honest with equal compensation prices given a clientele

permitting them to work at full capacity. If the expert does not have enough customers,

she over-treats to make some money out of her otherwise unused capacity. This incentive

to repair too much disappears if and only if there is no money in repair.

In a second step we determine the equilibrium prices. These prices depend crucially

on the number of active experts. If demand exceeds the active experts’ capacity, experts

charge those equal compensation prices that make consumers indifferent between buying

and not buying the experts’ services. With these reservation prices experts are honest

and appropriate the entire surplus. In contrast, if capacity exceeds demand, Bertrand

competition drives prices down to marginal costs of zero. Since at these marginal cost

prices there is no money in repair, experts are honest even with idle capacity. Here

consumers appropriate the entire surplus.

Finally, we analyze the experts’ entry decision. We first confine our attention to

symmetric strategies. Since there are more experts than necessary to serve the whole
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market with honest behavior, the experts’ entry strategies are mixed. Free entry in the

expertise business drives expected profits down to zero. Accordingly, experts choose the

probability of entry so that they all make zero profits on average. Moreover, we show that

an asymmetric equilibrium exists in which experts are honest and appropriate the entire

surplus.

The extent of the theoretical literature on fraudulent experts is fairly small. In a

classic article Darby and Karni (1973) discuss how reputation, market conditions, and

technological factors affect the amount of fraud. Their paper relies heavily on verbal

arguments and anecdotes. Yet it contains some of the ideas we formalize in the paper at

hand.

Pitchik and Schotter (1987) describe a mixed-strategy equilibrium in an expert-

customer game. The expert randomizes between either reporting truthfully or not; the

customer randomizes between acceptance and rejection of a treatment recommendation.

Demski and Sappington (1987) focus on the problem of inducing an expert to acquire

a costly expertise. Whereas in our model diagnosis is necessary prior to repair, ‘blind

treatment’ is possible in Demski and Sappington who assume repair to be costless. In

this setup they study optimal contracts between a principal and an expert (agent).

Wolinsky (1993) examines customer search for multiple opinions and reputation con-

siderations. In his specialization equilibrium some experts exclusively provide diagnosis

while the other experts engage in either activity. Consumers first visit a ‘diagnosis-only’

expert. If she recommends treatment, consumers visit a ‘two-activity’ expert for a second

diagnosis and the actual repair. Our analysis differs from Wolinsky’s in several respects.

In particular, while our equilibria result in efficient diagnosis and repair, in Wolinsky’s

equilibria there is too much diagnosis.

Taylor (1995) considers experts who, unlike our experts, incur no cost for unnec-

essary treatments. Unnecessary repairs are thus not inefficient in his setup. His experts

never diagnose a product as healthy; moreover, ex post contracting, free diagnostic checks,

consumer procrastination in obtaining checkups, and long-term maintenance agreements

may occur in Taylor’s equilibria.

Closest to this analysis is our paper (Emons (1995)). While the paper at hand is

about competitive experts, there we consider a credence good monopolist. The monopo-

list’s capacity is determined endogenously. From the observation of i) capacity and prices

or ii) just prices consumers attempt to infer the quality of the seller’s services. More-

over, we distinguish between the cases of observable and unobservable expert diagnosis

and repair services. We show that for three out of the four possible constellations the

monopolist always chooses non-fraudulent behavior. Only when capacity and services are
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non-observable does no trade take place. The two papers are thus related in their basic

result: if consumers rationally process ex ante information, the market mechanism can

solve the fraudulent expert problem.2)

The remainder of the paper is organized as follows. In the next section we describe

the model. In section 3 we describe the experts’ repair policy. In the subsequent section

we derive the pricing strategy. In section 5 we describe the entry decision. Section 6

contains a discussion of our results. Section 7 concludes the paper. Proofs are relegated

to the Appendix.

2. The Model

We consider a durable good endowed with a stock of services. When a certain

amount of services is left over, the product is up for diagnosis and potential repair. We

normalize this remaining capacity to 1 monetary unit. During its remaining life, our

durable good is of the ‘one-hoss shay’ type, i.e., either it makes available total remaining

services 1 or it delivers services 0.

When the product is up for diagnosis, it can be in good or in bad shape. If the

product is in good shape, it makes available services 1 with probability qh ∈ (0, 1); when

the product is in bad shape, the corresponding probability is q` with 0 < q` < qh. Ac-

cordingly, in either condition the product may either work or fail. Yet when it is in good

shape, the probability of working is higher. Let p denote the probability that the product

is in bad and (1− p) the probability of the product being in good shape. The consumer

does not know which of the two conditions his product is in.

Experts, however, are able to detect the product’s condition. By diagnosing the

product, an expert finds out whether it is in good or in bad shape. When the product is

in bad shape the expert can fix it so that it is in good shape afterwards. Let d > 0 be the

total resource cost of diagnosing a product; the total resource cost of a repair is r > 0.

The timing of the production decisions, however, is such that these costs are not

experienced as genuine marginal costs. An expert has to make a prior decision on entry.

The expert has L units of time (say, hours) available. If she does not enter the market

for expertise, she can work L hours in an alternative activity. If she does enter the expert

business, she allocates her L units of time to diagnosis and repair; d is the time an expert

needs per diagnosis and r the time per repair. An expert’s time cost, however, is sunk.

Once she has entered the market, she can only use her time for diagnosis and repair; she

can no longer work in the alternative job.

The experts’ reservation wage is normalized to 1. Accordingly, L is the sunk cost of
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becoming active; d and r measure the minimum average costs of diagnosis and repair if,

say, the expert performs either activity exclusively. Note that marginal costs are different

from average costs. An active expert has a fixed capacity the cost of which is sunk.

Therefore, her marginal costs are 0 except for the capacity margin where marginal costs

are “ +∞”. When, in the following, we talk about minimum average costs we mean d

and r.

There is a continuum of identical consumers with total measure 1.3) Consumers

are risk neutral and care only about monetary flows. Accordingly, given that we have

normalized the product’s remaining capacity to 1 monetary unit, without diagnosis and

repair a consumer’s expected utility is Ū = (1 − p)qh + pq`. With (honest) diagnosis

and repair priced at minimum average costs the consumer’s expected utility amounts to

qh − d − pr. The consumer incurs the cost of diagnosis in any case. With probability p

the product is in bad shape and needs treatment. In return, the consumer has a product

that is in good shape for sure.

It is efficient to check the product and fix it if necessary, meaning qh − d− pr > Ū

or p(qh− q`) > d+ pr. Fixing a bad product increases the consumer’s utility by (qh− q`).
With probability p the product is in bad shape. Accordingly, the expected benefit from

diagnosing and repairing the product is p(qh− q`). The surplus the experts’ services may

generate is, therefore, p(qh − q`) − (d + pr). For notational purposes we define the ratio

of aggregate benefits to aggregate costs w := p(qh − q`)/(d+ pr) > 1.

There are I identical experts indexed by i = 1, . . . , I. An expert either enters the

market with capacity L or she does not enter at all; we call the former an active and the

latter an inactive expert. We assume that repair is possible only after diagnosis.4) Given

non-fraudulent behavior, an expert’s capacity L in units of time thus translates into the

capacity L/(d+ pr) in terms of customers.

Experts are not ‘too large’ relative to the market; more specifically, an expert cannot

serve more than half of the market given honest behavior. Furthermore, to avoid integer

problems let L/(d + pr) := 1/k ∈ Q. Accordingly, k experts, k ≥ 2, k ∈ N, are sufficient

to serve the entire market with honest services. Moreover, to ensure competitive behavior

there are more experts than necessary to serve the entire market, i.e., k < I. Indeed,

to have a simple closed form solution for an expert’s entry decision, we will assume that

I = k + 1.5)

Let us now describe how experts may defraud consumers. After diagnosis the expert

knows which condition the product is in. When the product is in bad shape, she can repair

it, i.e., turn it into good shape. Yet she can also ‘repair’ a good product; in this case the

expert unnecessarily works r units of time on the product — leaving it at least in good
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shape. Alternatively, when the product is in good condition, the expert can recommend

not to fix it. Nevertheless, she can make the same recommendation when the product

is in bad shape. Ex post the consumer has no way of finding out whether his product

was repaired unnecessarily or whether it needed treatment that was not provided. The

expert’s services thus constitute ‘credence’ goods as distinct from search and experience

goods — from ex post observations the consumer can never be certain of the quality of

the services he has purchased. The only possibility for the consumer not to be defrauded

is to infer the expert’s incentives to be honest from ex ante observable variables such as

the quoted prices and market shares.6)

Note that we assume diagnosis and repair to be verifiable. This assumption is ap-

propriate for, say, dentists whose customers, willy-nilly, suffer any (un-)necessary drilling.

It is not appropriate for, e.g., a customer taking his car to the shop in the morning and

picking it up in the evening without being able to tell whether the mechanic has actually

worked on the vehicle. Here the expert has yet another possibility to defraud her cus-

tomers. She can claim to have fixed the car without having touched it, thus collecting

repair fees from an unlimited number of customers. This related problem is dealt with in

Emons (1995).

An expert picks prices D and R that she charges for diagnosis and repair. Moreover,

she chooses a repair policy conditional on the product’s condition. We identify this policy

by the probability of repair. Let α denote the probability of repair given that the product

is in good shape and β the probability of treatment if the product is in bad shape. These

two conditional probabilities determine the unconditional ex ante probability of repair

γ = (1− p)α + pβ which is quite useful for later purposes.

With this notation we may distinguish three scenarios. If α = 0, β = 1, and thus

γ = p we talk of efficient repair. The expert fixes all bad and no good products; thereafter

a product is certainly in good shape. A consumer’s expected utility with this honest repair

policy is qh −D − pR.

If α > 0, β = 1, and thus γ = (1 − p)α + p we talk of too much repair. The

expert not only fixes all bad but also good products. With this fraudulent repair policy

a consumer’s expected utility amounts to qh −D − γR. Obviously, the consumer prefers

efficient repair to too much repair.

Finally, if α = 0, β < 1, and thus γ = βp we talk of too little repair. The expert

fixes no good and not all bad products. With this deceitful repair policy a product may

be in bad shape and the consumer’s expected utility is (1−p+γ)qh + (p−γ)q`−D−γR.

The consumer prefers efficient to too little repair if (qh− q`) ≥ R which must be satisfied

since (qh − q`) is the consumer’s reservation utility for repair if the product is in bad
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shape. If the expert is indifferent between honest and fraudulent behavior, she behaves

honestly. Note that the expert’s repair policy defines her capacity in terms of customers

L/(d+ γr).

Consumers consult an expert if and only if the expected utility of being served by

her exceeds Ū . All consumers first visit the expert offering the most favorable terms If,

given her repair policy, this most favored expert has insufficient capacity, she rations her

customers randomly. The rationed consumers then go to the ‘second-best’ expert etc.

If there is no other active expert, or the remaining experts offer bad deals, the rationed

consumer ends up with no service and, accordingly, has utility Ū . If the offers of several

experts are equally the best, the consumer gives equal weight to all of them.

This consumers’ search strategy together with the experts’ rationing policy gives rise

to a distribution of consumers over experts. Let ηi(·) denote the fraction of consumers

ending up with expert i, i = 1, . . . , I. Since consumers have total mass 1, ηi also measures

expert i’s clientele. If ηi ≤ L/(d + γir), expert i has enough capacity to treat her entire

clientele. Let ζi denote the probability of being served by expert i so that, in this case,

ζi = 1. If ηi > L/(d + γir), expert i has more customers than she can handle with her

repair policy. Therefore, she has to ration her customers randomly and ζi = L/(d+γir)ηi.

The number of customers treated by the expert is thus min{ηi;L/(d+γir)}; her expected

profit amounts to min{ηi;L/(d+ γir)}(Di + γiRi)−L if she is active and zero otherwise.

Let us now turn to the formulation of the game which we have set up as a four

stage game. In the first stage of the game experts decide about entry; more specifically,

expert i, i = 1, . . . , I, picks the probability of entry σi ∈ [0, 1]. In the second stage those

j experts who are in the business choose prices (Di, Ri), i = 1, . . . , j, j = 1, . . . , I. In

the third stage consumers observe the quoted prices (Di, Ri)
j
i=1. Then consumers start

their sequential search. Consumers’ search along with the experts’ rationing procedure

determine ηi ∈ [0, 1], i = 0, . . . , j,
∑j

i=0 ηi = 1, where η0 denotes the fraction of consumers

going to no expert. In the fourth stage expert i chooses her repair policy αi(Di, Ri, ηi)

and βi(Di, Ri, ηi), i = 1, . . . , j.7)

In stage three consumers have beliefs (α̂i, β̂i)
j
i=1 about the experts’ stage four repair

policies. Consumers evaluate the expected utility U(Di, Ri, α̂i, β̂i, ζi) with each expert i,

i = 1, . . . , j, according to these beliefs. Each consumer chooses his search strategy so as

to maximize his expected utility; if a consumer is indifferent between consulting and not

consulting an expert, he opts for a consultation. Experts choose prices and repair policies

so as to maximize expected profits. We first confine our attention to symmetric strategies

for all agents; in section 6 we also look at asymmetric strategies.

We focus on subgame perfect equilibria. This means, in particular, that each decision
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maker acts in a sequentially rational fashion, following a strategy from each point forward

that maximizes the expected payoff given the current information and beliefs. In our

setup this implies that the experts’ repair policies are indeed optimal once consumers

arrive. In equilibrium the consumers’ beliefs are borne out: what consumers expect is

what experts actually choose to do.

3. The Repair Policy

We solve the game by backwards induction. Accordingly, we begin the analysis by

studying the experts’ diagnosis and repair incentives in stage four which are embedded

in the functions αi(·) and βi(·). Recall that an expert enters the market with a capacity

of L units of time having a sunk cost L. In terms of customers the expert has capacity

L/(d+ pr) given honest behavior. Apparently, expert i’s behavior depends on the size of

her clientele ηi relative to her capacity L/(d+pr). According to whether ηi Q L/(d+pr) we

will say that expert i has too many/enough/not enough customers given non-fraudulent

behavior. If, say, the expert does not have enough customers, she may start ‘repairing’

good products to utilize her otherwise idle capacities. If she has too many customers, she

may, e.g., be tempted not to fix all bad products given that diagnosis is more profitable

than repair.

The last example indicates that the expert’s incentives also depend on the relative

profitability of diagnosis to repair which, in turn, is determined by her prices Di and Ri.

If the expert has too many customers, the only constraint she faces (at the margin) is her

precious time. To maximize profits, she compares the profit per hour repair (Ri − r)/r
with the profit per hour diagnosis (Di − d)/d. If the former exceeds the latter she will

repair too much and vice versa if diagnosis is more profitable than treatment. We specify

these ideas more precisely in the following Lemma.

Lemma 1:

i) If ηi > L/(d+ pr), expert i is honest if and only if Ri = rDi/d;

ii) if ηi = L/(d+ pr), expert i is honest if and only if Ri ≤ rDi/d;

iii) if ηi < L/(d+ pr), the expert is honest if and only if Ri = 0, i = 1, . . . , j.

< insert Figure 1 about here >

The message of Lemma 1 can be seen in Figure 1. Consider the line Ri = rDi/d

along which (Ri − r)/r = (Di − d)/d. Accordingly, on this equal compensation line the
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expert is indifferent between diagnosis and treatment so that with too many customers

she opts for efficient repair.8) In region (I) where Ri > rDi/d the expert prefers repair to

diagnosis. Whatever the number of customers, she will ‘fix’ anything she diagnoses, i.e.,

repair too much. In region (II) in which Ri < rDi/d the expert prefers diagnosis to repair

so that she wishes to increase the number of diagnoses at the expense of repairs. With

enough customers, however, she cannot diagnose more products; she repairs efficiently to

make some money out of her otherwise unused capacity. Along the Di-axis the expert has

proper incentives if she does not have enough customers. She does not repair too much

to utilize her idle capacity because there is no money in treatment.9)

Subgame perfection implies that the consumers’ beliefs (α̂i, β̂i)
j
i=1 reflect the experts’

incentive structure we have just derived. Note that it is possible to pin down the experts’

incentives even further once we incorporate the entire list of prices (Di, Ri)
j
i=1. We will do

this in the next section. The most important aspects of the experts’ incentives, however,

are summarized by Lemma 1.

4. The Pricing Strategy

Let us now determine the experts’ stage two pricing policy together with the con-

sumers’ stage three search strategy. The pricing strategy depends crucially on the number

of active experts. If, on the one hand, the number of experts and thus capacity is less

or equal to total demand, the experts charge the consumers’ reservation prices; if, on

the other hand, capacity exceeds demand, experts charge marginal cost prices. In both

scenarios, however, consumers obtain honest services.

Lemma 2: If j = 1, . . . , k experts are active, expert i charges (Di, Ri) = (dw, rw), i =

1, . . . , j; consumers get no surplus and all experts work at full capacity. If (k+ 1) experts

are active, expert i charges (Di, Ri) = (0, 0), i = 1, . . . , k + 1; consumers get the entire

surplus and all experts have idle capacity. These prices are unique for j = 1, . . . , k − 1

and for k + 1 experts. If k experts are active, all prices Di ∈ [dw, p(qh − q`)] and Ri =

qh − q` −Di/p, i = 1, . . . , k are Nash equilibria of the price game.

This result may be explained as follows. Consider first the cases where there are k

or less than k active experts so that with non-fraudulent behavior total capacity is less

or equal to total demand. Experts are thus the short and consumers the long side of the

market. This constellation gives experts the power to charge the reservation prices.

A consumer is happiest about the expert’s services when he gets for sure a product
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being in good shape; then the consumer has the maximum willingness-to-pay of p(qh−q`)
for the expert’s services. The consumer certainly has a good product if the expert repairs

efficiently or if she repairs too much. The consumer’s overall willingness-to-pay does not

increase if the expert raises repair above the efficient level. Yet, if she repairs too much, she

needs more of her precious time than with efficient repair, without making more money.

Accordingly, the expert maximizes her profits per consumer by non-fraudulent repair.

The maximum prices the consumer is willing to pay for honest services, i.e., the prices

generating the reservation utility Ū are given by the indifference curve Ri = qh−q`−Di/p;

see Figure 1. With these prices and honest repair, the consumer tries to get hold of the

expert’s services.

Next, note that if the number of active experts does not exceed k, all active experts

have more than, or exactly the number of customers, that they can handle with honest

behavior. From Lemma 1 we know that with too many customers the expert is honest if

and only if she charges prices on the equal compensation line Ri = rDi/d, see Figure 1.

Consequently, by charging the prices (dw, rw), consumers know they are treated honestly

and the expert appropriates all the surplus per consumer.

Finally, note that no expert has an incentive to deviate. All experts work at full

capacity. A consumer who is served is as well off as a consumer who is rationed. If

an expert offers more attractive terms, say lower prices on the equal compensation line,

all customers try to get her services. However, she cannot serve more than L/(d + pr)

customers so that such a customer-friendly deviation lowers her profits. If she offers prices

above the consumers’ reservation prices, she loses all her customers and makes a loss L.

Now consider the case with (k + 1) experts. In this constellation market capacity

with honest behavior exceeds market demand. Here experts are the long side of the market

and charge marginal cost prices. First note that with marginal cost prices (0, 0) experts

are honest whatever the number of customers. With not enough customers, experts are

honest because there is no money in repair; with too many customers experts are honest

because marginal cost prices are on the equal compensation line. Accordingly, consumers

get honest services and end up with the utility p(qh − q`).
If an expert unilaterally increases her prices, the utility of her customers obviously

falls below p(qh − q`). Accordingly, all 1/(k + 1) customers of the deviating expert will

try to consult one of the non-deviating experts. Since the k non-deviating experts have

idle capacity of 1/(k+ 1), they can provide honest services to all of the deviating expert’s

customers. Since with prices (0, 0) the non-deviating experts have proper incentives,

all customers of the deviating expert are therefore served honestly by the non-deviating

experts. Consequently, with any positive prices an expert loses all her customers to her
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colleagues, making such a price increase unattractive.

5. The Entry Decision and the Equilibrium of the Entire Game

Let us finally analyze the experts’ entry decision in the first stage of the game. The

experts’ entry strategy is strictly mixed. The probability of entry is such that all experts

make expected zero profits.

Lemma 3: In the first stage of the game expert i enters with probability σi := σ =
k
√

1− 1/w, i = 1, . . . , k + 1.

This result is easily explained. Obviously, experts cannot play pure strategies in a

symmetric equilibrium. If all experts stay out of the market, unilaterally entering is highly

profitable; conversely, if all experts enter, each of them makes a loss which can be avoided

by staying out of the business. Accordingly, experts will randomize whether or not to

enter. If, say, all experts but the first enter with probability σ, expert 1 makes expected

zero profits if she enters, or stays out, or chooses any mixture of the two pure strategies.

Consequently, it is also an optimal strategy for expert 1 to enter with probability σ so

that all experts end up with expected zero profits.

We are now in the position to describe the symmetric equilibrium of the entire game

which has the following features: Experts randomize their entry decision. If experts are

the short side of the market, they charge reservation prices; if they are the long side, they

charge marginal cost prices. Consumers buy in both scenarios and get honest services.

Proposition 1: In a symmetric subgame perfect equilibrium the experts’ stage 1 entry

decision is given by Lemma 3. Their stage 2 pricing strategy is summarized by Lemma 2.

Consumers’ stage 3 beliefs about the repair policy and the experts’ actual repair policy are

as described in Lemma 1.

6. Discussion

Let us start with the welfare analysis. In our equilibrium consumers get honest

service and experts make expected zero profits. All the expected surplus that is generated

goes to consumers. In contrast, any situation with fraud is inefficient: there is either over-

or under-treatment. Since experts have the correct incentives, we may thus conclude that

the market mechanism solves the fraudulent expert problem.

Notice, however, that our equilibrium leads to inefficient entry. Recall that k experts

11



are sufficient to serve the entire market with honest services. Accordingly, efficiency

requires k experts to be active. Yet in our equilibrium any number of experts between

0 and (k + 1) will be active with positive probability; our equilibrium thus results in

inefficient capacity levels. We will return to this point when we next discuss the issue of

uniqueness.

Our equilibrium is not unique. First, the price game with k experts has a continuum

of prices supporting non-fraudulent behavior; see Lemma 2. Second and more important,

the entry subgame has asymmetric equilibria: k experts enter and one expert stays out

of the business.

Lemma 4: In the first stage of the game some expert j chooses σj = 0, j = 1, . . . , k + 1,

while the remaining experts enter with probability σi = 1, i = 1, . . . , k + 1, i 6= j.

Obviously, these entry decisions give rise to asymmetric equilibria for the entire game.

Proposition 2: The entry decisions given by Lemma 4 together with the pricing and

repair policies of Lemmata 2 and 1 form subgame perfect equilibria of the entire game.

In these asymmetric equilibria the efficient number of experts is active. The k

active experts charge prices (dw, rw), are honest, and appropriate the entire surplus.

The inactive expert does not enter because this inevitably leads to excess capacity and

marginal cost prices; she would make a loss which she can avoid by staying out of the

business.

While these asymmetric equilibria may, at first glance, appear more appealing than

our symmetric equilibrium, there is a snag to them. Recall that we have assumed that total

demand is an integer multiple of the individual capacity. We have made the assumption

for the following reason. If there is excess capacity, there is at least one expert too many

in the market. If in such a situation an expert raises her prices, she immediately loses her

entire clientele; nobody comes back because the non-deviating experts have enough spare

capacity. Since residual demand is zero, no expert deviates from marginal cost prices.

If the integer assumption fails to be satisfied, if say k = 7.5, the price game with

8 experts possesses no equilibrium in pure strategies. Reservation prices cannot be an

equilibrium because all experts have idle capacity and undercutting pays off. Marginal

cost prices also cannot be an equilibrium. If an expert slightly raises her prices, she

retains the residual demand of .5 which cannot be satisfied by her colleagues. The integer

assumption thus saves us from deriving the mixed strategy equilibrium for this particular
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price game which has some nasty features.

If there are sufficiently many experts, in our symmetric equilibrium the probability

of hitting this problematic number of experts is small so that what exactly happens in this

price game is of minor importance. In the asymmetric entry equilibrium, the problematic

number of experts always comes up so that the analysis of that situation is crucial to the

equilibrium. Moreover, given that we have assumed free entry and Bertrand competition,

we are happier with the zero profit equilibrium. Nevertheless, the asymmetric equilibrium

is efficient while the symmetric one is not. Perhaps the symmetric equilibrium is better

suited to capture the ‘short run’ situation while the asymmetric equilibrium describes

the ‘long run’ situation. Furthermore, a regulator can try to implement the asymmetric

equilibrium by some kind of licensing.

Let us make a last remark on the robustness of our results. Our findings are corrob-

orated by our related paper (Emons (1995)). Since that paper is about credence goods

monopolists, we do not encounter strategic competition considerations. This simplifying

aspect allow us to extend the analysis in other directions. We endogenize the capacity

choice and also analyze what happens if capacity is unobservable; moreover, we allow for

non-observable and thus non-verifiable expert services. Due to the simple structure of the

model, we can completely characterize the set of equilibria, all but one of which share

the following features: The monopolist serves the entire market with honest services and

appropriates the entire surplus. It is only when capacity and services are non-observable

that no trade takes place. Accordingly, the message of the two papers is in the same

spirit. If consumers rationally process ex ante information about market conditions, the

market mechanism can solve the fraudulent expert problem. Experts are honest to max-

imize the consumers’ surplus. In the monopoly case non-fraudulent services generate the

highest profit for the monopolist; in the competitive setup honesty is necessary in order

to survive.

7. Conclusions

We have analyzed credence goods which are provided by experts. Since consumers

can never be certain of the quality of the sellers’ services, experts have strong incentives

to cheat. We have shown that if consumers rationally process all the information about

market conditions, they can infer the sellers’ incentives and the market may indeed solve

the fraudulent expert problem.

Our results permit to discriminate more clearly between those situations in which

market institutions may solve the fraudulent expert problem and those circumstances
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where the market fails so that we need other mechanisms to discipline sellers. In reality

we encounter both these cases. For a lot of skilled trades, such as carpentry, plumbing,

or bicycle repair, the market mechanism seems to do a fairly good job just as our model

predicts. In other professions, as the examples in the Introduction suggest, there is fraud

so that other mechanisms are called for to induce honest services. Since expert services

are often subject to licensing and regulation, a more thorough understanding of these

markets will be helpful for public policy purposes.

14



Appendix

Proof of Lemma 1:
i) If ηi > L/(d + pr), the expert has more customers than she can handle with honest

behavior. Given her time constraint, she is only interested in the profit per hour repair (Ri−r)/r
compared to the profit per hour diagnosis (Di−d)/d. If Ri = rDi/d, which implies (Ri−r)/r =
(Di − d)/d, she is indifferent between diagnosis and repair and, therefore, behaves honestly.
If Ri > rDi/d, she prefers repair to diagnosis and thus repairs too much and vice versa if
Ri < rDi/d.

ii) If ηi = L/(d + pr) the expert fully utilizes her capacity with non-fraudulent behavior.
If Ri < rDi/d, she strictly prefers diagnosis to repair; yet she makes diagnoses for her entire
clientele. She has to repair to use up her remaining time L−η1d; honestly fixing the bad products
of her clientele just exhausts her capacity. If Ri = rDi/d, the argument is along similar lines
as i). If Ri > rDi/d, the expert strongly prefers repair to diagnosis. Hence, she will repair all
products she diagnoses and treat fewer than ηi customers.

iii) If ηi < L/(d+ pr) expert i has unused capacity with non-fraudulent behavior. As long
as Ri > 0, she makes money by repairing some more products to use her idle capacity. Only
when Ri = 0 the incentive for too much repair disappears.

Q.E.D.

Proof of Lemma 2:
i) We first consider the price games with j = 1, . . . , k active experts. If ηi ≥ L/(d + pr),

Lemma 1 implies that prices (Di, Ri) = (dw, rw) induce non-fraudulent repair. Honest services
at these prices generate utility Ū so that all consumers wish to buy unless there are better
alternatives. Accordingly, if all experts charge (dw, rw), they all have a clientele ηi ≥ 1/j, i =
1, . . . , j. Since j ≤ k, ηi ≥ L/(d+pr). Expert i makes expected profit L/(d+pr)[dw+prw]−L =
L(w − 1).

It remains to be shown that expert i’s profits do not increase if she unilaterally changes
her prices. If she charges prices such that Ri > rDi/d, she sets γi = 1 and treats only L/(d+ r)
customers. A consumer who is served has utility qh−D−R. The maximum prices he is willing
to pay are Di ∈ [0, dw) and Ri = p(qh − q`) − Di. With these prices the expert makes profits
(L/(d + r))[Di + Ri] − L = L(p(qh − q`)/(d + r) − 1) < L(w − 1). Accordingly, if the expert
charges the reservation or lower prices in region (I), she works at full capacity but makes lower
profits. If she charges prices above the reservation prices, she loses all customers and makes a
loss L.

If Ri < rDi/d, the expert prefers diagnosis to repair. She diagnoses all products and
repairs only to use her otherwise idle capacity. Accordingly, she sets

γi =

{
L− ηid)/ηir, , if L/(d+ pr) ≤ ηi < L/d;
0, otherwise.

A consumer who is served has utility qh− (p−γi)(qh− q`)−Di−γiRi. The maximum prices the
consumer is willing to pay are Di ∈ [(qh−q`)/(r/d+1/γi); γi(qh−q`)] and Ri = (qh−q`)−Di/γi.
With these prices the expert makes profits (L/(d+ γir)) [Di + γiRi] − L = L[γi(qh − q`)/(d +
γir) − 1] ≤ L(w − 1). Note that the inequality is strict for j < k. If the expert charges the
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reservation or lower prices in region (II), she works at full capacity yet her profits do not increase.
If she charges prices above the reservation prices, she loses all customers and makes a loss L.

If Ri = rDi/d and Di < dw, profits are obviously lower than L(w − 1); if Di > dw, the
expert has no customers and makes a loss L.

The results on uniqueness for these price games follow immediately from the proof of
proposition 1 in Emons (1995).

ii) Consider now the price game with (k + 1) active experts. If ηi < L/(d + pr), Lemma
1 implies that prices (Di, Ri) = (0, 0) induce non-fraudulent repair. Honest services at these
prices generate utility p(qh − q`) so that all consumers wish to buy. Accordingly, if all experts
charge (0, 0), they all have a clientele ηi = 1/(k + 1) < L/(d + pr), i = 1, . . . , k + 1. Expert i
makes expected profit (1/(k + 1))[Di + pRi]− L = −L.

It remains to be shown that expert i cannot increase her profits if she unilaterally increases
her prices. It is obvious that with any price increase the utility of expert i’s customers falls
below p(qh − q`). Accordingly, if expert i raises her prices, all her 1/(k + 1) customers will try
to consult the other experts. Since the k non-deviating experts have idle capacity of 1/(k + 1),
they can provide honest services to all of expert i’s customers. Since the prices (0, 0) are on
the equal compensation line R = rD/d, the non-deviating experts have proper incentives with
1/k customers. All of expert i’s customers are therefore served honestly by the non-deviating
experts. Consequently, with any positive prices expert i loses all her customers to her colleagues,
making such a price increase unattractive.

Given these results, the price game with k + 1 experts has the same basic structure as
the Bertrand game without capacity constraints. Uniqueness follows from using the standard
undercutting arguments; see, e.g., Tirole (1988).

Q.E.D.

Proof of Lemma 3 :
Suppose all experts but the first enter with probability σi := σ = k

√
1− 1/w, i = 2, . . . , k+

1 so that with probability σk all of them are active and with the complementary probability
(1 − σk) not all of them are in the market. Expert 1’s expected profit from entering with
probability σ1 is σ1[(1 − σk)L(w − 1) − σkL] = σ10 = 0. Accordingly, expert 1 is indifferent
between her two pure strategies and playing σ1 = σ is indeed a best response to σi = σ, i =
2, . . . k + 1.

Q.E.D.
Proof of Lemma 4 :

Suppose σi = 1, i = 1, . . . , k+1, i 6= j. Then expert j’s expected profit from entering with
probability σj is σj(−L) which is maximized by σj = 0. If σi = 1, i = 2, . . . , k, i 6= j and σj = 0,
expert 1’s expected profit from entering with probability σ1 is σ1L(w − 1) which is maximized
by σ1 = 1.

Q.E.D.
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Endnotes

1) To give a few examples: In the Swiss Canton of Ticino ‘ordinary patients’ (i.e., the
population average) had 33% more of the seven most important operations than medical doctors
and their families. Interestingly enough, lawyers and their loved ones have about the same
operation frequency as the families of medical doctors (Domenighetti et al. (1993)). In Germany
the most expensive shops charge up to double of what the cheapest garages charge for bodywork
without necessarily being any better (ADAC Motorwelt 11/92). In the US unnecessary repairs
were recommended to car owners by employees of Sears Automotive Centers in 90% of the test
cases (Wall Street Journal 6/23/92).

2) Other related theoretical papers include Milgrom and Roberts (1986), Glazer and
McGuire (1993), Pitchik and Schotter (1993), Dana and Spier (1993), and Wolinsky (1995).
For an experimental study mimicking a market for expertise, see Plott and Wilde (1991).

3) We make the continuum assumption not only for notational convenience. With a finite
number of consumers we run into the following problem. Suppose an expert expects a clientele
with (1− p) good and p bad products. With a finite number of customers, however, the actual
realization of her clientele will be different from the expected one. Accordingly, at the end of the
day she will realize that she has either too little or excess capacity and she will start behaving
fraudulently. With a continuum of customers we do not encounter this difficulty which would
complicate the analysis substantially.

4) This is the standard assumption made in literature; see, e.g., Nitzan and Tzur (1991),
Wolinsky (1993), or Taylor (1995). It captures in a straightforward manner the idea that it is
cheaper to provide diagnosis and repair jointly rather than separately. An exception is the paper
by Demski and Sappington (1987).

5) While the assumption that total demand is an integer multiple of the individual capacity
is crucial to our results, the assumption on the overall number of experts is made only for the
ease of exposition. We will comment on the integer assumption in due course.

6) The fraudulent expert problem may disappear if consumers purchase long term insur-
ance contracts that fully cover all repairs and forgone services during the entire product life; such
covenants are commonly known as service or health maintenance plans. With these contracts
experts have correct incentives since they bear all marginal costs. Yet such long term insurance
contracts are particularly prone to consumer moral hazard so that in equilibrium consumers
may purchase no service maintenance plans. The problem of too little repair may be solved by
a short term warranty for lost services: if the product fails, the expert pays the consumer a
sufficiently large amount of money. An honest expert may offer such a warranty at a lower cost
than an expert who, say, doesn’t repair at all. Such warranties provide experts with an incentive
not to cheat. Yet, they may easily fail to do the job when there is consumer moral hazard in
the last stage of product life. See Emons (1988).

7) A few remarks for those readers who feel that games should be written down properly:
Since players choose simultaneously in stages one, two, and three, we have a game of ‘almost
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perfect’ instead of ‘perfect’ information; see, e.g., Tirole (1988), 431-432. After stage four payoffs
are determined as follows. First nature chooses whether the product is in good or bad shape.
Then players follow their plans of stages one to four. Finally, nature decides whether the product
works or fails and the actual payoffs are realized.

8) In the principal-agent literature a related result is known as the equal compensation
principle. See, e.g., Milgrom and Roberts (1992), 228-232.

9) Darby and Karni (1973) also point out that the sellers’ incentives depend on the state
of demand. When there is ‘no customer waiting for service’, sellers have an incentive to oversell
their services to utilize idle resources; this incentive to oversell disappears when ‘the length of
the queue of customers waiting for service is positive’. Darby and Karni do not discuss that the
sellers’ incentives also depend on prices.
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